up
Representing large numbers with only 8 bits.

Given 8 bits ABCDEFGH,
this interprets AB as a binary number N between 1 and 4 inclusive,
and CDEFGH as a binary number M between 1 and 64 inclusive.
The entire number is interpreted as [(the Nth prime)^(10^M)] - 2.

This gives a reasonable range of unique values from 0 to about 10^54,
including 0,1,2 and 3.

.. I guess this is fairly similar to fixed-point math.

Listed below first in uh.. unencoded order,
then in ABCDEFGH order.

a = n = m = X = a = X =
(note, biggie(255)=255^ 46531388344983681457769984555620005635274427815488751368772861643065 27336046109809769059770264739422997516152388772934870967919220279082 02723577523298823921405525156108220587367401450451500030722647224647 46837070302159356661765043244993104360887623976285955058200326531849 13766856273818439738536117928730928632771252899582070218059456600829 45938206217699514913249070142151765097584047604513358472527446978205 15292329680698271481385779516652518207263143889034764775414387732372 81284045688088516336103748545240617631186826742835849240807519768891 10536037148834033749308919511097903942697939783101901412010192871093 75